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Mortality Modelling Context

I Ageing populations are a major challenge that many countries
are facing today.

I Fertility rates are declining while life expectancy is
increasing.

I longevity risk: the adverse financial outcome of people living
longer than expected, and hence the possibility of outliving
their retirement savings.

I long term demographic risk has significant implications for
societies and manifests as a systematic risk for pension plans
and annuity providers.

I Policymakers rely on mortality projection to determine
appropriate pension benefits and to understand the costing of
different economic assumptions and regulations regarding the
age of retirement of a given population.



Mortality Modelling Context

The modelling and management of systematic mortality risk are
two of the main concerns of large life insurers and pension plans:

Modelling:

I What is the best way to forecast future mortality rates and to
model the uncertainty surrounding these forecasts?

I How do we value risky future cashflows that depend on future
mortality rates?

Management:

I How can this risk be actively managed and reduced as part of
an overall strategy of efficient risk management?

I What hedging instruments are easier to price than others?



Mortality Modelling Context

Stylized Facts of Mortality Data: Enhancing mortality models
requires an understanding of common features of mortality
behaviour (see discussion in [Cairns, Blake and Dowd, 2008])

I Mortality rates have fallen dramatically at all ages.

I Rate of decrease in mortality has varied over time and by age group.

I For example, for English and Welsh males, the age 25 rate
improved dramatically before 1960 and then levelled off;
conversely at age 65 the opposite was true

I Absolute decreases have varied by age group.

I For example, for English and Welsh males, the age 45
improvements have been much higher than the age 85
improvements.

I Aggregate mortality rates have significant volatility year on year.



Mortality Modelling Context

Consequences on Insurance Sector and Governments:

I Prior to 2000’s: the UK and Australia defined-benefit
pension plans had limited exposure to effects of longevity risk
since high equity returns on pension fund wealth management
portfolios were masking the impact of longevity risk

I Post 2000: declining equity returns coupled with record low
interest rate financial environments has demonstrated the
significance of decades of longevity improvements, posing a
very real problem for pension schemes.

I Furthermore, by regulation, insurers who offer retirement
income products are required to hold additional reserving
capital to cover longevity risk.

I A key input to address longevity risk is the development
of advanced mortality modelling methodology.
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Stochastic Mortality Models

The uncertainty in future death rates can be divided into two
components:

I Unsystematic mortality risk. Even if the true mortality rate
is known, the number of deaths, D(t, x), will be random.

I larger population ⇒ smaller unsystematic mortality risk
(due to pooling of offsetting risks - diversification).

I Systematic mortality risk. This is the undiversifiable
component of mortality risk that affects all individuals in the
same way.

I Forecasts of mortality rates in future years are uncertain.



Background on Stochastic Mortality Modelling

I Pricing of retirement income products depends crucially on
the accuracy of the predicted death or survival probabilities.

I It has been widely documented that survival probability is
consistently underestimated especially in the last few
decades ([IMF, 2012]).

I To capture the stochastic nature of mortality trends,
[Lee and Carter, 92] proposed a stochastic mortality model to
forecast the trend of age-specific mortality rates.

I Since the introduction of the Lee-Carter model, a range
of stochastic mortality models have been proposed in
the literature.



Stochastic Mortality Models
Single age group models:

I Model the individual age group mortality evolution either:
force of mortality 1 or annual death counts.

I Typically such models include:
I temporal smoothing splines;
I demographic factors;
I can be count processes or functional regressions (or both);
I ARIMA type structures.

Term structure of mortality (multiple age group) models:

I Typically model the log mortality rate across the term
structure of mortality.

I Typically such models include:
I temporal smoothing splines;
I period effects; and
I cohort effects.

1force of mortality represents the instantaneous rate of mortality at a
certain age measured on an annualized basis. It is identical in concept to failure
rate, also called hazard function, in reliability theory.



Stochastic Mortality Models: Regression Formulations

Generalized Linear Model Type: have been widely adopted in
mortality modelling (eg.[Forfar, 1988], [Renshaw, 2003,2000,1991],
[Currie,2016]).

Modelling target was either:

I the probability of death qx , based on initial exposures; or

I the force of morality µx , based on central exposures.

When targeting qx it was common to use a binomial observation
distribution

When targeting the force of mortality it was common practice to
use a Poisson observation distribution



Stochastic Mortality Models: Time-series Regression
Stochastic Period Effect Models: influential stochastic factor
model for mortality modelling given by [Lee and Carter, 1992]

I Dynamics of the log crude death rates, yx ,t = ln m̂x ,t , follow:

yx ,t = αx + βxκt + εx ,t , εx ,t
iid∼ N(0, σ2

ε),

I α = αx1:xp := [αx1 , . . . , αxp ] represents the age-profile of the
log death rates

I β = βx1:xp measures the sensitivity of of death rates for
different age group to a change of period effect κt .

I The period effect, κt , for forecasting, is typically set as

κt = κt−1 + θ + ωt , ωt
iid∼ N(0, σ2

ω),

where εx ,t and ωt are independent.



Stochastic Mortality Models: Time-series Regression
Stochastic Period Effect Models:

I [Renshaw and Haberman,2003,2006] and [Cairns,2009] extend
Lee-Carter model to include: multiple period effects and cohort
effect to capture the change of mortality with respect to year and
year-of-birth, respectively:

I multi-period (
∑k

i=1 β
(i)
x κ

(i)
t );

I cohort factor (ζt−x).

I [Cairns et.al., 06] proposed a two-factor period effect mortality
model, known as the Cairns-Blake-Dowd (CBD) model, for
pensioner ages by modelling probability of death via logit:

logit(qx,t) := ln (qx,t/(1− qx,t)) .

I [Plat, 09] combines the desirable features of the previous models
and includes a term for infant mortality.



Stochastic Mortality Models: Time-series Regression

Extensions to the LC model:

Model Dynamics

[Lee and Carter,92] ln(m̂x,t) = αx + βxκt + εx,t

[Renshaw et al, 03] ln(m̂x,t) = αx +
∑k

i=1 β
(i)
x κ

(i)
t + εx,t

[Renshaw et al, 06] ln(m̂x,t) = αx + β
(1)
x κt + β

(2)
x ζt−x + εx,t

[Currie,06] ln(m̂x,t) = αx + κt + ζt−x + εx,t

[Cairns et al.,06] logit(qx,t) = κ
(1)
t + κ

(2)
t (x − x̄)

[Cairns et al., 09] logit(qx,t) = κ
(1)
t + κ

(2)
t (x − x̄) + ζt−x

[Plat, 09] ln(m̂x,t) = αx + κ
(1)
t + κ

(2)
t (x̄ − x) + κ

(3)
t (x̄ − x)+ + ζt−x + εx,t

Recently, [Fung et al, 16] and [Fung et al, 17] have proposed new
extensions based on stochastic volatility structures in the latent
processes as well as non-homoscedasticity in the mortality term
structures, long-memory persistance and demographic factor model
distributed lags.



Background on Stochastic Mortality Modelling
Frequentist Models with demographic and economic data.

I In [Hanewald,2011] and [Niu,2014] investigate links between
economic growth and morality trends via regression model:

I Single Age Group Period effect Lee-Carter model + covariate (GDP).

I [Hanewald,2011] included cause-of-death categorical variables.

I [Murray and Lopez, 1997] developed a multi factor linear regression
model: the logarithm of the rate of mortality per age group, sex and
clustered cause of death is regressed against the socio-economic,
educational, technological and cause-of-death related regressors.

I [Hyndman and Yasmeen, 2012] and [Erbas, 2010] considered
dimension reduction based feature extraction methods for regressors:
functional PCA covariates from mortality curves
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State Space Based Stochastic Mortality Models

I A state space model is basically specification of two model
components:

I a stochastic observation equation; and
I a stochastic latent Markov state process.

A key advantage of state space modelling is that the typical
two-stage estimation and forecasting procedure under the SVD or
Poisson regression maximum likelihood approaches can be
combined in a single setting. This has the following advantages:

I more numerically and statistically robust than standard two stage
regression modelling;

I can remove awkward identification specifications;

I is computationally more efficient; and

I can produce more accurate in-sample and out-of-sample forecasts;

I can be optimal from an efficiency and unbiased estimation
perspective;

I easily adapted to Bayesian inference!



State Space Based Stochastic Mortality Models

Cohort effects: state-space formulation

Observation equation: modelling dynamics of crude death rate:

ln m̃x ,t = αx + βxκt + βγ
x γt−x + εx ,t ,

where εx ,t is a noise term.

State equation for latent cohort:

I Consider a matrix of cells where the row and column
corresponds to age (x) and year (t) respectively.
(Assume x = 1, . . . , 3 and t = 1, . . . , 4 for illustration)

I The cohort factor γt−x is indexed by the year-of-birth t − x
and its value on each cell is displayed in the table.

I We first notice that the value γt−x is constant on the
“cohort direction”, that is on the cells (x , t),
(x + 1, t + 1) and so on.



State Space Based Stochastic Mortality Models

Cohort effects: state-space formulation

age/year t = 1 t = 2 t = 3 t = 4

x = 1 γ0 γ1 γ2 γ3

x = 2 γ−1 γ0 γ1 γ2

x = 3 γ−2 γ−1 γ0 γ1

Table: Values of the cohort factor γt−x on a matrix of cells (x , t).



State Space Based Stochastic Mortality Models

Cohort effects: state-space formulation

Observation Equation is expressed in matrix form by letting
γxt := γt−x to obtain:ln m̃1,t

ln m̃2,t

ln m̃3,t

 =

α1

α2

α3

+

β1
β2
β3

κt+

βγ
1 0 0
0 βγ

2 0
0 0 βγ

3

γ1t
γ2t
γ3t

+

ε1,t
ε2,t
ε3,t

 .

As time flows from t = 1 to t = 4, the cohort vector (γ1t , γ
2
t , γ

3
t )

>,
which represents the cohort factor in matrix form, proceeds as γ11(= γ0)

γ21(= γ−1)
γ31(= γ−2)

→

 γ12(= γ1)
γ22(= γ0)
γ32(= γ−1)

→

γ13(= γ2)
γ23(= γ1)
γ33(= γ0)

→

γ14(= γ3)
γ24(= γ2)
γ34(= γ1)

 .



State Space Based Stochastic Mortality Models

State-Space Formulation: Observation Process
Let yx = ln m̃x ,t , in matrix notation we have (recall that
γxt := γt−x)


yx1,t
yx2,t
...

yxp ,t

 =


αx1

αx2
...

αxp

+


βx1 βγ

x1 0 · · · 0
βx2 0 βγ

x2 · · · 0
...

...
...

. . .
...

βxp 0 0 · · · βγ
xp




κt
γx1t
γx2t
...

γ
xp
t

+


εx1,t
εx2,t
...

εxp ,t

 .

It is clear that, we have for i ∈ {1, . . . , p}:

yxi ,t = αxi + βxiκt + βγ
xi
γxit + εxi ,t

Here (κt , γ
x1
t , . . . , γ

xp
t )> is the p + 1 dimensional latent state

vector.



State Space Based Stochastic Mortality Models

Cohort effects: state-space formulation

To obtain the Cohort Latent State Equation the key observation
is that the first two elements of the cohort vector at time t − 1 will
appear as the bottom two elements of the cohort vector at time t.

Therefore, the evolution of the cohort vector must satisfy:γ1t
γ2t
γ3t

 =

∗ ∗ ∗
1 0 0
0 1 0

γ1t−1

γ2t−1

γ3t−1

+ . . . ,

which is the defining property of “cohort”: γt−x = γ(t−i)−(x−i).

Furthermore, it is therefore obvious that one only needs to model
the dynamics of γ1t but not γ2t and γ3t .



State Space Based Stochastic Mortality Models
State-Space Formulation: State Process
A parsimonious state equation formulation is given in matrix form:

κt
γx1t
γx2t
...

γ
xp−1
t

γ
xp
t


=



1 0 0 · · · 0 0
0 λ 0 · · · 0 0
0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 1 0





κt−1

γx1t−1

γx2t−1
...

γ
xp−1

t−1

γ
xp
t−1


+



θ
η
0
...
0
0


+



ωκ
t

ωγ
t

0
...
0
0


.

Here we assume κt is a random walk with drift process

κt = κt−1 + θ + ωκ
t , ωκ

t
iid∼ N(0, σ2

ω),

Dynamics of γx1t is described by a stationary AR(1) process

γx1t = λγx1t−1 + η + ωγ
t , ωγ

t
iid∼ N(0, σ2

γ),

where |λ| < 1.



State Space Based Stochastic Mortality Models

State-Space Formulation: State Process
An extended latent cohort dynamic for γx1t is obtained by
specifying the second row of the p + 1 by p + 1 matrix.

For example, one can consider generally the state equation as

κt
γx1t
γx2t
...

γ
xp−1
t

γ
xp
t


=



1 0 0 · · · 0 0
0 λ1 λ2 · · · λp−1 λp

0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 1 0





κt−1

γx1t−1

γx2t−1
...

γ
xp−1

t−1

γ
xp
t−1


+



θ
η
0
...
0
0


+



ωκ
t

ωγ
t

0
...
0
0


,

where

γx1t = λ1γ
x1
t−1 + λ2γ

x2
t−1 + · · ·+ λp−1γ

xp−1

t−1 + λpγ
xp
t−1 + η + ωγ

t

which is an ARIMA(p,0,0) process since γxit−1 = γx1t−i , i = 2, . . . , p.



State Space Based Stochastic Mortality Models

Cohort effects: state-space formulation
We can express the matrix form succinctly as

yt = α+ Bϕt + εt , εt
iid∼ N(0, σ2

ε1p),

ϕt = Λϕt−1 +Θ+ ωt , ωt
iid∼ N(0,Υ),

where

B =


βx1 βγ

x1 0 · · · 0
βx2 0 βγ

x2 · · · 0
...

...
...

. . .
...

βxp 0 0 · · · βγ
xp

 , Λ =



1 0 0 · · · 0 0
0 λ 0 · · · 0 0
0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 1 0


, Θ =



θ
η
0
...
0
0


,

and ϕt = (κt , γ
x1
t , . . . , γ

xp
t )>, 1p the p-dimensional identity matrix

and Υ is a p + 1 by p + 1 diagonal matrix with diagonal
(σ2

κ, σ
2
γ , 0, . . . , 0).
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State-Space Hybrid Factor Models for Mortality

I Extending stochastic mortality models with observable
exogenous features/covariates from demographic data.

I This offers two advantages to standard Lee-Carter models:
I firstly they may improve predictive power of the models
I secondly they may improve interpretation of the dynamic of

the “term-structure” of age specific mortality rates.

We address four new and important aspects in practice
previously ignored:

1. missing data in time-series and panel (matrix) structured real
demographic data;

2. noisy observations and outliers (in real data);

3. parsimonious model creation via dimension reduction; and

4. optimal estimation via computational efficient state-space
filtering methods.



State-Space Hybrid Factor Models for Mortality
“Hybrid”: a mix of observable stochastic features and latents
stochastic factors

I Two fundamental approaches to develop Hybrid Factor Models:

1. time varying factor with static loading coefficient
(classical distributed lag regressions such as ARDL models);

2. static factor with time varying stochastic loading coefficients.
(state space models e.g. dynamic Nelson-Siegel yield curves).

I Approach 2 is more appropriate for data which is high dimensional
in nature, time series / panel structured but represented by
relatively “short time series” lengths.

I This type of data is particularly prevalent in demographic
studies!

I The main concept here is that the feature extraction is performed
over the entire available time series of observable demographic data.

I Features extracted are added to the stochastic mortality model in a
static form with dynamic latent state processes for the factor
loadings over time.



State-Space Hybrid Factor Models for Mortality

I There are numerous ways to achieve this in a state-space model:
I the factor may influence all age groups equally by entering the

factor into the state equation; or
I the factor may influence each age specific mortality rate

differently by adding it in the observation equation.

I Denote generically Ft as the p × k factors matrix where p may
represent number of age groups and k may represent number of age
specific factors.

I We then specify an additional latent pk dimensional vector %t for
the factor loading for year t.

I %t is a dynamic regression parameter for factors matrix Ft

which specifies the impact of xi ∈ {x1, . . . , xp} age group and

m ∈ {1, . . . , k} component corresponding to [Ft ]i,m by %i,mt
element.

I Assume %t is modelled by VAR(1) process given by

%t = Ω%t−1 +Ψ+ ω%
t , ω%

t
iid∼ N (0, σ2

%Ipk)

with homogeneous variant for covariance matrix of error term ω%
t .



State-Space Hybrid Factor Models for Mortality
Consider the State-Space Hybrid Stochastic Period-Cohort-Demographic Model

The general notation of the model is as follows

yt = α+ B̃tϕ̃t + εt , εt
iid∼ N (0, σ2

εIp),

ϕ̃t = Λ̃ϕ̃t−1 + Θ̃+ ω̃t , κ̃t
iid∼ N (0, Υ̃)

where ϕ̃t = (ϕt ,%t) is a (p+ pk +1)× 1 latent process vector and

Θ̃ =

(
Θ(p+1)×1

Ψpk×1

)
(p+pk+1)×1

is a vector of drift parameters for state equations, where Ψ
corresponds to the model of %t .
We assume independence of error terms in latent variables to give
a covariance matrix for the state error ω̃t :

Υ̃ =

(
Υ(p+1)×(p+1) 0

0 σ2
%Ipk

)
(p+pk+1)×(p+pk+1)



State-Space Hybrid Factor Models for Mortality

Define the following two objects: F̃t =
⊕k

j=1[Ft ]j ,· and

f̃t = vec
(
FT
t

)
giving:

F̃t =


[Ft ]1,· 0 0 · · · 0
0 [Ft ]2,· 0 · · · 0
...

. . .
...

0 · · · [Ft ]p,·


p×pk

and f̃t =


[Ft ]1,1
[Ft ]1,2

...
[Ft ]p,k


pk×1

where [Ft ]j ,· and [Ft ]j ,m represent the vector of the jth row of the
matrix Ft and the element corresponding to jth row and mth
column, respectively.
Consider three cases of model:

Case 1: Factors in Observation Equation Only;

Case 2: Factors in Period Effect State Equation Only;

Case 3: Factors in Cohort Effect State Equation Only.



State-Space Hybrid Factor Models for Mortality

We can now define the different sub-models:

B̃t p×(p+pk+1) =


(

Bp×(p+1) F̃t

)
for Case 1,(

Bp×(p+1) 0p×pk

)
otherwise,

Λ̃(p+pk+1)×(p+pk+1) =



(
Λ(p+1)×(p+1) 0(p+1)×pk

0pk×(p+1) Ωpk×pk

)
for Case 1,

 Λ(p+1)×(p+1)
f̃Tt

0p×pk

0pk×(p+1) Ωpk×pk

 for Case 2,

 Λ(p+1)×(p+1)
01×pk

F̃t

0pk×(p+1) Ωpk×pk

 for Case 3.
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Robust Probabilistic Feature Extraction Methods

I For instance, if we have d countries demographic data, where
p denotes the number of different demographic attributes
observed, then the p × d matrix of data in year t is Yt .

I We assume that Yt is observed (or partially observed) over
periods t ∈ {1, . . . ,T}.

I We do not wish to utilise the raw demographic data Yt :
in general it will produce a model with too many parameters
⇒ feature extraction methods based on minimizing some
pre-specified projection pursuit index.

I We concentrate on linear methods of dimensionality reduction,
more precisely, those expressible as linear projections
[Friedman, 1973] which includes Principal Component
Analysis (PCA) and its extensions and robust alternatives.



Robust Probabilistic Feature Extraction Methods

Deterministic vs. Probabilisitic PCA Method Types:

I Deterministic (observed sample based projections);

I Probabilistic population based projections;

I Partial Probabilistic PCA based projections via Factor
Analysis;

I Missing Data Probabilistic PCA via Factor Analysis and
Augmented Data
⇒ (ideal for demographic data).

I Statistically Robust variations....

(due to time) JUMP SLIDES TO ANALYSIS



Robust Probabilistic Feature Extraction Methods
Deterministic PCA

I Simple case of Y ∈ RN×d of original data: i.e. a single d -
dimensional observation in a given moment of time (no missingness)

I The goal of Principal Component Analysis is to identify the most
meaningful unit length basis to re-express a data set Y.

I The purpose of a new basis is to better filter out the noise and
reveal hidden structure.

Therefore, PCA looks for the given projection of the observation data

YN×dWd×d = XN×d

where W is a d × d matrix denotes a linear projection.

I The columns of W are the new basis vectors, that is WTW = Id ,
and express rows of X.

I Re-expressing Y in meaningful way means that PCA aims to lower a
redundancy in data set, i.e. leads to removing the linear
dependencies which provide measurements with additional noise.
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Deterministic PCA
In mathematical terms, the goal can be written for i , j columns of
X

[X]T·,i [X]·,i = [W]T·,i CY [W]·,i ,

and
[X]T·,i [X]·,j = [W]T·,i CY [W]·,j = 0,

where CY = YTY.
We seek such a linear combination that maximizes the overall
variance of X, CX = XTX.
The solution to the problem is found by a maximiser of the
following Lagrangian expression.

Q (W) = WTCYW −Λ
(
WTW − Id

)
.

for Λd×d being a diagonal d × d matrix with Lagrangian
coefficients.



Robust Probabilistic Feature Extraction Methods
The roots of a quadratic form are found by setting partial derivatives to
zero

∂Q

∂W
= 2CYW − 2ΛW = 0 ⇒ CYW = ΛW

I W is a matrix with columns as the eigenvectors of CY ; and

I Λ is a matrix of corresponding eigenvalues with the number of
non-zero elements equal to the rank of CY .

The columns of X indeed are orthogonal since

[X]T·,i [X]·,j = [W]T·,i CY [W]·,j = [W]T·,i λj [W]·,j = λj [W]T·,i [W]·,j = 0

and correspond to unequal eigenvalues.
It is easily proven that X, defined by W - the eigenvectors of CY satisfies
that it:

I maximizes the total trace of CX

I maximises the determinant of CX and

I maximizes the Euclidean distance between the columns of X

I miminizes the mean square error between the observation and its
projection.



Robust Probabilistic Feature Extraction Methods
Extending PCA to Stochastic Factor Analysis

I Relax the assumption that the underlying process is perfectly
observed (typically assumed in PCA above)

I Assume an observation error present and the covariance matrix used
in the PCA (deterministic or stochastic-population estimator based
analysis) no longer explains all variation in the response or the time
series demographic data.

Presenting PCA by means of Factor Analysis: with N realisations of
the d-dimensional random vector, placed in the rows of the random
matrices Y, X, ε giving:

Yn×d = Xn×dW
T
d×d + εn×d .

Factor analysis assumes the diagonal covariance structure of εt .
Stochastic Factor PCA: differs from the PCA model discussion from
the previous subsections as the components given by xt and W accounts
for correlation between elements of yt and only part of the variation (in
standard PCA xt and W account for the entire variance) since

EyTt yt = E
[(
xtW

T + εt
)T (

xtW
T + εt

)]
= WΛWT +Ψ.
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If we assume multivariate distribution of xt ∼ N (0, Id) and
et ∼ N (0,Ψ) we obtain conditional independence of yt given latent
variable xt , i.e.

yt |xt ,W,Ψ ∼ N
(
xtW

T ,Ψ
)
.

as Ψ is diagonal.

I Imposing normality assumptions on yt and xt enables performing
ML estimation of xt , W and Ψ with optimality properties.

The marginal distribution of yt is then calculated by the integration of
the joint distribution of yt and xt which gives:

π(yt |W,Ψ) =

∫
Rd

π(yt , xt |W,Ψ)dxt = (2π)−
d
2 |C|−1 exp {−1

2
ytC

−1yTt }

for C = WWT +Ψ where |C| denotes the determinant of the matrix.

I Notice that since Ψ is diagonal, the correlation structure between
components yt is specified by the matrix W.
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Link to Principal Component Analysis:

I If we assume that the error term εt is homogeneous, that is
Ψ = σ2Id for σ2 > 0, then the problem of finding W by
means of PCA given C = WWT + σ2Id is identifiable.

Having the eigendecomposition of the covariance matrix,
C = Ud×dLd×dU

T , for diagonal matrix L and orthonormal matrix
U, we have

0 = (C−L)U =
(
WTW + σ2Id − L

)
U =

(
WWT −

(
L− σ2Id

))
U.

I Thus, the matrix Λ =
(
L− σ2Id

)
and U are matrices of

eigenvalues and corresponding eigenvectors of WWT .

I Since λi = li − σ2 ≥ 0, the scalar σ2 can be chosen as the
smallest diagonal element of Λ.

I Then the factors loadings are given by P = UΛ
1
2 .



Robust Probabilistic Feature Extraction Methods

Probabilistic PCA with Missing Data:

I Until now, we assumed the data did not contain any missing
observations.

I However, in many demographic time series there are numerous
types of missing data.

I This is therefore an important aspect to address in the feature
extraction.

I When considering missing values we need to incorporate additional
variables which describe a distribution of missing observations.

I Let us denote yt = (yot , y
m
t ) to be a real valued

d - dimensional random vector, where yot is a sub-vector of observed
entries of yt and ymt is a sub-vector of unobserved entries, i.e.
missing.

I The indicator random variable rt decides which entries of yt are
missing denoting them by 1, otherwise 0.



Robust Probabilistic Feature Extraction Methods

Probabilistic PCA with Missing Data:

I Recall, that a single observation consists of the pair (yot , rt)
with distribution parameters (Θ,Θr ) respectively.

The likelihood of parameters is proportional to the conditional
probability yot , rt |Θ,Θr that is

π (yot , rt |Θ,Θr ) =

∫
π (yot , y

m
t , rt |Θ,Θr ) dymt

=

∫
π (rt |yt ,Θ,Θr )π (yt |Θ,Θr ) dymt

I In our study, we assume the pattern of missing data to be
MAR - missing at random as defined in [Little, 2002].

I This assumptions imposes the indicator variable rt to be
independent of the value of missing data.
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Probabilistic PCA with Missing Data:
If yt is MAR it satisfies

π(rt |yt ,Θ) = π(rt |yot ,Θ).

which results in

π (yot , rt |Θ,Θr ) = π (rt |yot ,Θr )

∫
π (yt |Θ) dymt

= π (rt |yot ,Θr )π (yot |Θ)

Under the MAR assumption, the estimation of Θ via maximum
likelihood of the joint distribution yot , rt |Θ,Θr is equivalent to the
maximisation of the likelihood of the marginal distribution yot |Θ.



Robust Probabilistic Feature Extraction Methods
Efficient Probabilistic PCA with Missing Data: EM Algorithm
The algorithm is summarized by the following two steps

I Expectation step: Expectation of the loglikelihood function of
joint distribution of yt , xt |W, σ2 given by

π(yt , xt |W,Ψ) = π(yt |xt ,W,Ψ)π(xt |W,Ψ)

= (2π|Ψ|)−
d
2 exp {−1

2

[
yt − xtW

T
]
Ψ−1

[
yt − xtW

T
]T

} (2π)−
d
2 exp{−1

2
xtx

T
t }

is taken with respect to conditional distribution xt , ymt |yot ,W, σ2

Qm
(
W, σ2|W∗, σ∗2) = Ext ,ymt |yot ,W,σ2

{
log
[
Lyt ,xt |W,σ2(σ∗2,W∗; y1:n, x1:n)

]}
I Maximisation step: Finding W∗ and σ∗2 that maximize

Qm
(
W, σ2|W∗, σ∗2)(
W∗, σ∗2) = argmaxW∗∈Rd×k ,σ∗2>0Q

m
(
W, σ2|W∗, σ∗2)

I In the non-missing data case, the previous EM steps can be solved in
closed from, see [Todzwolska et al, 2017]

I In the missing data case, to proceed with the EM algorithm, we need to
specify the moments of a conditional distribution of latent variables given
the observation vector, when we include the latent variable ymt .
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The conditional distribution xt , ymt |yot ,W, σ2 is obtained via Bayes’ rule as

π
(
xt , y

m
t |yot ,W, σ2

)
= π

(
xt |yt ,W, σ2

)
π
(
ymt |yot ,W, σ2

)
Given N realisation of yt with arbitrary missing entries, the expectation
step has a form

Qm
(
W, σ2|W∗, σ∗2

)
= Ext ,ymt |yot ,W,σ2

{
log

[
Lyt ,xt |W,σ2(σ∗2,W∗; y1:N , x1:N)

]}
=

∫
Rk×Rd

π(xt , yt |yot ,W, σ2) log

[
N∏

n=1

π
(
yn, xn|W∗, σ∗2

)]
dxtdyt

= −
N∑

n=1

{
d

2
log σ∗2 +

1

2
tr

(
E
[
xTn xn|yot ,W, σ2

])
+

1

2σ∗2 tr
(
E
[
yTn yn|yot ,W, σ2

])
− 1

σ∗2 tr
(
W∗E

[
xTn yn|yot ,W, σ2

])
+

1

2σ∗2 tr
(
W∗TW∗E

[
xTn xn|yot ,W, σ2

])}

I E
[
xTn xn|yot ,W, σ2

]
are derived as in the complete data case with an

adjustment for the missing data.

I The other moments of the conditional distribution xt , yt |yot ,W, σ2

need to calculated.
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The moments of joint distribution xt , ymt |yot ,W, σ2.
For simplicity assume for a moment yt = (yot , y

m
t ) ∼ N (0d ,Cd×d)

for a covariance matrix

Cd×d =

[
Coo Com

Cmo Cmm

]
where indexes o and m correspond to the locations of observed
and missing entries of the random vector yt .
The joint distribution yt |yot under MAR assumption is multivariate
normal, that is

yt |yot ∼ N
([

yot
yot C

−1
oo Com

]
,

[
0 0
0 Cmm − CmoC−1

oo Com

])
.

since

π (ymt |yot ) =
π (ymt , y

o
t )

π (yot )
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The covariance matrix of the marginal distribution yt |W, σ2 can
be derived as

C =

[
WoWT

o + σ2Ido WoWT
m

WmWT
o WmWT

m + σ2Idm

]
(3)

where do and dm such that do + dm = d are numbers of elements
observed and missing (which can be zero) respectively, m and o
are the indexes of matrices denote sets of rows which correspond
to missing and observed values of yt , respectively (recall that
columns of matrix W correspond to values of xt).
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Theorem The expectation of the E-step,
Ext |yt ,W,σ2 log

[
Lyt ,xt |W,σ2(σ∗2,W∗; y1:n, x1:n)

]
, where yt = (yot , y

m
t ), is

Qm
(
W, σ2|W∗, σ∗2

)
=

∫
Rk×Rd

π(xt , yt |yot ,W, σ2) log

[
N∏

n=1

π
(
yn, xn|W∗, σ∗2

)]
dxtdyt

= −
N∑

n=1

{
d

2
log σ∗2 +

1

2
tr

(
E
[
xTn xn|yot ,W, σ2

])
+

1

2σ∗2 tr
(
E
[
yTn yn|yot ,W, σ2

])
− 1

σ∗2 tr
(
W∗E

[
xTn yn|yot ,W, σ2

])
+

1

2σ∗2 tr
(
W∗TW∗E

[
xTn xn|yot ,W, σ2

])}
for the corresponding moments of the conditional distribution
xn|yot ,W, σ2

E
[
yn|yot ,W, σ

2
]
1×d

=

[
yon

E
[
ymn |yot ,W, σ2

]]

E
[
yTn yn|yot ,W, σ

2
]
d×d

=

[
0 0

0 Cmm − WmWT
o C−1

oo WoW
T
m

]
+ E

[
yn|yot ,W, σ

2
]T

E
[
yn|yot ,W, σ

2
]

E
[
xn|yot ,W, σ

2
]
1×k

= E
[
yn|yot ,W, σ

2
]
W

(
WTW + σ

2Id
)−1

E
[
xTn xn|yot ,W, σ

2
]
k×k

= σ
2
(
WTW + σ

2Id
)−1

+ E
[
xn|yot ,W, σ

2
]T

E
[
xn|yot ,W, σ

2
]

E
[
xTn yn|yot ,W, σ

2
]
k×d

=

[
0

Wm − WmWT
o C−1

oo Wo

]
+ E

[
xn|yot ,W, σ

2
]T

E
[
yn|yot ,W, σ

2
]
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Theorem The maximizers of Qm
(
W, σ2|W∗, σ∗2) are the solution

to the set of the problems ∂Qm

∂W∗ = 0 and ∂Qm

∂σ∗2 = and are given by

W∗
d×k =

(
N∑

n=1

E
[
xTn yn|yot ,W, σ2

]T)( N∑
n=1

E
[
xn|yot ,W, σ2

]T E
[
xn|yot ,W, σ2

])−1

σ∗2 =
1

Nd

N∑
n=1

tr
(
E
[
yTn yn|yot ,W, σ2

]
− 2W∗E

[
xTn yn|yot ,W, σ2

]
+E

[
xn|yot ,W, σ2

]T E
[
xn|yot ,W, σ2

]
W∗TW∗

)
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Mortality Data and Demographic Data Description

I The examined data consists of male and female mortality and
demographic data obtained from Human Mortality Database
(http://www.mortality.org) for European countries.

I We use four different data sets:
I Birth counts;
I Death counts;
I Life tables: Life Expectancy at Birth and Death Rates.

I The time series vary in terms of data structure, the number
of available observations and the missingness attributes
of the records.

I The longest time series is provided by Swedish and French
mortality data, starting from 1751 and 1816, respectively.

I The shortest time series are given for Greece and Slovenia,
1983-2014 and 1981-2013, respectively.

http://www.mortality.org


Mortality Data and Demographic Data Description

TYPES OF DATA:

I One dimensional time series data per country per gender
(31 countries, M and F, gives 124 time series):

I Birth counts and
I Life expectancy at Birth.

I Multivariate cross sectional time series data per country
per gender: age specific information is provided for Death
counts and Death Rates.

I A single observation per country in time t describes
I a number of deaths of people with ages from 0 to 110+

(Death counts) or;
I number of deaths for ages from 0 to 110+ scaled to the size of

that population, per unit of time (Death Rates).



Mortality Data and Demographic Data Description

Country Life Expectancy (E0) No. Births Death Rate (mx) No. Deaths

Austria 1947 - 2014 1871 - 2014 1947 - 2014 1947 - 2014

Belarus 1959 - 2014 1959 - 2014 1959 - 2014 1959 - 2014

Belgium 1841 - 2015 1840 - 2015 1841 - 2015 1841 - 2015

Czech Republic 1950 - 2010 1947 - 2014 1950 - 2014 1950 - 2014

Denmark 1835 - 2014 1835 - 2014 1835 - 2014 1835 - 2014

Estonia 1959 - 2013 1959 - 2013 1959 - 2013 1959 - 2013

Finland 1878 - 2012 1865 - 2012 1878 - 2012 1878 - 2012

France 1816 - 2014 1806 - 2014 1816 - 2014 1816 - 2014

East Germany 1956 - 2013 1946 - 2013 1956 - 2013 1956 - 2013

West Germany 1956 - 2013 1946 - 2013 1956 - 2013 1956 - 2013

Greece 1981 - 2013 1981 - 2013 1981 - 2013 1981 - 2013

Estonia 1959 - 2013 1959 - 2013 1959 - 2013 1959 - 2013

Hungary 1950 - 2014 1950 - 2014 1950 - 2014 1950 - 2014

Iceland 1838 - 2013 1838 - 2013 1838 - 2013 1838 - 2013

Ireland 1950 - 2014 1950 - 2014 1950 - 2014 1950 - 2014

Table: Demographic data available per country (HM Database).



Mortality Data and Demographic Data Description

Country Life Expectancy (E0) No. Births Death Rate (mx) No. Deaths

Italy 1872 - 2012 1862 - 2012 1872 - 2012 1872 - 2012

Latvia 1959 - 2013 1959 - 2013 1959 - 2013 1959 - 2013

Lithuania 1959 - 2013 1959 - 2013 1959 - 2013 1959 - 2013

Luxembourg 1960 - 2014 1950 - 2014 1960 - 2014 1960 - 2014

Netherlands 1850 - 2012 1850 - 2012 1850 - 2012 1850 - 2012

Norway 1846 - 2014 1846 - 2014 1846 - 2014 1846 - 2014

Poland 1958 - 2014 1958 - 2014 1958 - 2014 1958 - 2014

Portugal 1940 - 2012 1886 - 2012 1940 - 2012 1940 - 2012

Russia 1959 - 2014 1959 - 2014 1959 - 2014 1959 - 2014

Slovakia 1950 - 2014 1950 - 2014 1950 - 2014 1950 - 2014

Slovenia 1983 - 2014 1983 - 2014 1983 - 2014 1983 - 2014

Spain 1908 - 2014 1908 - 2014 1908 - 2014 1908 - 2014

Sweden 1751 - 2014 1747 - 2014 1751 - 2014 1751 - 2014

Switzerland 1876 - 2014 1871 - 2014 1876 - 2014 1876 - 2014

United Kingdom 1922 - 2013 1922 - 2013 1922 - 2013 1922 - 2013

Ukraine 1959 - 2013 1946 - 2013 1959 - 2013 1959 - 2013

Table: Demographic data available per country (HH Database).
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Results and Analysis

The model estimation was performed by Forward-Backward
Kalman Filter within Rao-Blackwellised Adaptive Gibbs Sampler
(MCMC).

The models we considered in our studies were of type:

1. [LCC:] Lee-Carter model with the stochastic cohort effect.

2. [DFM-PC:] demographic factor model version of Lee-Carter
(Period-Cohort).

The factors are obtained by performing Probabilistic Principle
Component Analaysis PPCA jointly on the set of data for all
countries listed, excluding:
United Kingdom (response variable)

Greece and Slovakia (due to short time series).



Results and Analysis

[DFM-PC:] demographic factor model version of LCC sub-models:

I [DFM-PC-B:] the mean of first principal component of Birth
counts as a static parameter, age specific element of %t ;

I [DFM-PC-D-r/s:] the first principal component of Death
counts ( which is age and country specific) as an exogenous
factor, one element of %t corresponds to a country specific
subvector of the component, robust standardisation
(s = non-robust standardisation);

I [DFM-PC-Mx-r/s:] the first principal component of Death
Rates ( which is age and country specific) as an exogenous
factor, one element of %t corresponds to a country specific
subvector of the component, robust standardisation
(s = non-robust standardisation);



Results and Analysis

Detailed Analysis of Results and Studies can be found in:

Toczydlowska D., Peters G.W., Fung M.C. and Shevchenko P.V.
Stochastic Period and Cohort Effect State-Space Mortality Models
Incorporating Demographic Factors via Probabilistic Robust Principle
Components Risks: Special Issue on “Aging Population Risks”.
Available at SSRN: https://ssrn.com/abstract=2977306

Detailed Description of Estimation Method and Properties
for Mortality State Space Models can be found in:

Fung M.C., Peters G.W., Shevchenko P.V.
A unified approach to mortality modelling using state-space framework:
characterisation, identification, estimation and forecasting.
Annals of Actuarial Science. 2017 May:1-47.
Available at SSRN: https://ssrn.com/abstract=2786559

Fung M.C., Peters G.W. and Shevchenko P.V.
Cohort Effects in Mortality Modelling: A Bayesian State-Space Approach
(March 24, 2017).
Available at SSRN: https://ssrn.com/abstract=2907868

https://ssrn.com/abstract=2977306
https://ssrn.com/abstract=2786559
https://ssrn.com/abstract=2907868


Results and Analysis

We will demonstrate a sub-set of results that illustrate some
interesting properties:

I Posterior estimates of the latent state processes for E [κt |Ft ]
and E [γt−x |Ft ] vs. time t and 95% posterior credible
intervals.

I Posterior estimates of the latent factor loading processes
1
T

∑T
s=1 E [ρs |Ft ] by year and age.

I Estimates of the latent state processes for the cohort effect
1
T

∑T
s=1 E [γt−x |Ft ] by year and age

I Posterior estimates of the factor loadings E [ρt |Ft ] vs. year
and country and 95% posterior credible intervals.

I In-sample Model Selection: MSE, BIC and DIC.

I Out-of-sample forecast performance: posterior predictive
analysis MSEP



Results and Analysis

Figure: The Bayesian posterior mean estimates with 95% posterior
credible intervals for κt (upper panel) and cohort effect state process γ0

t

(lower panel) under different models (colours of lines) for British female
log death rates during 1922-2002.



Results and Analysis

Figure: The Bayesian posterior mean estimates for %t across age groups
(y axis) over time (x axis) under DFM-PC-B model for British female log
death rates during 1922-2002.



Results and Analysis

Figure: The Bayesian posterior mean estimates for the cohort effect latent
processes vector γt across age groups (y axis) over time (x axis) under
different models for British female log death rates during 1922-2002.



Results and Analysis

Figure: The Bayesian posterior mean estimates with 95% posterior
credible intervals for %t



Results and Analysis

I Some select factors corresponding to the age specific vectors of
features from European countries can have a significant influence in
a causal manner on the UK morality data.

I Specific countries have factor loadings %t indicating significant
effects on UK log mortality rates at certain periods of time.

I Whilst other countries consistently have a posterior mean
loading at the origin, these countries maybe interpreted as not
having an influence on the mortality experience of the UK.

I The models are more consistent about the set of countries which do
not have an effect on the log death rates of United Kingdom
Females.

I The models corresponding to the non-robust standardisation
indicate bigger impact of western Europe countries whereas their
robust alternatives indicate the significance of the patterns from
Easter and Central Europe countries such as Lithuania, Poland or
Russia.



Results and Analysis
Out-of-Sample Forecast Age Specific Log-Death Rates:
Performance Analysis

I We choose for the out-of-sample study the last 10 years of the
available sample for British Female death rates.

I Model calibration period is 1922− 2002
⇒ forecast performance analysis for 2003− 2013

Model MSE DIC MSEPMCMC MSEPKalman

LCC 0.0097 -3627 0.1778 0.1774
DFM-PC-B 0.0072 -6500 0.0057 0.0062
DFM-PC-D-r 0.0182 -6380 0.0177 0.0251
DFM-PC-D-s 0.0065 -5996 0.0185 0.0156
DFM-PC-Mx-r 0.0081 -8225 0.0111 0.0129
DFM-PC-Mx-s 0.0174 -3951 0.0692 0.0285

I The results confirm that adding demographic features, as
additional explanatory variables to the LCC model, improves
both in-sample fit out-of-sample fit and therefore the
predictability of log death rates.



Results and Analysis

Figure: 10-year out-of-sample forecasted log death (y axis) rates by age
with corresponding prediction intervals.



Conclusions
I We explored how to construct a state space formulation of the stochastic

mortality models for Period and Cohort factors

I We explored how to extend to Hybrid Multi-Factor Stochastic
State-Space Mortality models with Period-Cohort factors as well as
demographic regressors.

I We briefly learnt about feature/covariate extraction methods to extract
the demographic factors used in the extended HMF Stochastic
State-Space Mortality models.

I We see that the standard Lee-Carter stochastic mortality models
consistenly under performs in-sampel and out-of-sample in a range of
estimation criteria, compared to the new proposed models.

I Lee-Carter Period-Cohort model consistently under estimates log-death
rates

I Extended models proposed improve significantly the forecast performance
of log-death rates.
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